A label-free, non-derivatization chemiluminescence resonance energy transfer (CRET) detection platform has been developed for the detection of the non-fluorescent small molecule 6-mercaptopurine. This CRET process arose from a chemiluminescent (CL) donor-acceptor system in which the reaction of bis(2,4,6-trichlorophenyl)oxalate (TCPO)-H(2)O(2)-fluorescein (maximum emission at 521.6 nm) served as the donor and gold nanoparticles (AuNPs, maximum absorption at 520.0 nm) served as the acceptor. This process caused a significant decrease in the CL signal of the TCPO-H(2)O(2)-fluorescein reaction. The presence of 6-mercaptopurine induced an aggregation of AuNPs with the assistance of Cu(2+) ions through cooperative metal-ligand interactions that was accompanied by a distinct change in color and optical properties. The maximum absorption band of the AuNPs was red-shifted to 721.0 nm and no longer overlapped with the CL spectrum of the reaction; as a result, the CL signal was restored. This CRET system exhibited a wide linear range, from 9.0 nmol L(-1) to 18.0 μmol L(-1), and a low detection limit (0.62 nmol L(-1)) for 6-mercaptopurine. The applicability of the proposed CRET system was evaluated by analysis of 6-mercaptopurine in spiked human plasma samples.