Sorption thermochemical storage systems can store thermal energy for the long-term with minimum amount of losses. Their flexibility in working with sustainable energy sources further increases their importance vis-à-vis high levels of pollution from carbon-based energy forms. These storage systems can be utilized for cooling and heating purposes or shifting the peak load. This review provides a basic understanding of the technologies and critical factors involved in the performance of thermal energy storage (TES) systems. It is divided into four sections, namely materials for different sorption storage systems, recent advances in the absorption cycle, system configuration, and some prototypes and systems developed for sorption heat storage systems. Energy storage materials play a vital role in the system design, owing to their thermal and chemical properties. Materials for sorption storage systems are discussed in detail, with a new class of absorption materials, namely ionic liquids. It can be a potential candidate for thermal energy storage due to its substantial thermophysical properties which have not been utilized much. Recent developments in the absorption cycle and integration of the same within the storage systems are summarized. In addition, open and closed systems are discussed in the context of recent reactor designs and their critical issues. Finally, the last section summarizes some prototypes developed for sorption heat storage systems.