This study describes polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) behavior during the incineration of laboratory waste, including combustible laboratory solid waste (LSW), laboratory plastic waste (LPW), and organic laboratory liquid waste (LLW). Stack flue gas (SFG), input materials, bottom ash (BTA), first quenching tower ash (FQA), secondary quenching tower ash (SQA), and baghouse ash (BHA) were sampled and analyzed using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) assay and bioassay. The PCDD/F concentration of SFG met the standard in Taiwan. The Cl levels of LPW and LLW were roughly equivalent to that of municipal solid waste (MSW). Therefore, the SFG concentration, content of fly ash, and distribution behavior of PCDD/Fs are reasonably similar to those of MSW incinerators. The LSW had an extremely high Cl level (11.4%). The emission factor of the whole incineration system was 888 µg I-TEQ/ton-waste, which is 10-fold higher than that of MSW. The PCDD/F was mainly in BTA (31.6 wt.%) and fly ash (63.1 wt.%), resulting in higher PCDD/F level of ashes compared with that of MSW ashes. Both HRGC/HRMS analysis and bioassay results show similar PCDD/F emission characteristics during the incineration of LW. In addition, the linear regression between the values acquired using these two methods show a good relation (R 2 > 0.84), indicating that Ad-DR bioassay is a promising fast-screen method for determining PCDD/F levels.