We present a framework for stability analysis of systems of coupled linear Partial-Differential Equations (PDEs). The class of PDE systems considered in this paper includes parabolic, elliptic and hyperbolic systems with Dirichelet, Neuman and mixed boundary conditions. The results in this paper apply to systems with a single spatial variable and assume existence and continuity of solutions except in such cases when existence and continuity can be inferred from existence of a Lyapunov function. Our approach is based on a new concept of state for PDE systems which allows us to express the derivative of the Lyapunov function as a Linear Operator Inequality directly on L2 and allows for any type of suitably well-posed boundary conditions. This approach obviates the need for integration by parts, spacing functions or similar mathematical encumbrances. The resulting algorithms are implemented in Matlab, tested on several motivating examples, and the codes have been posted online. Numerical testing indicates the approach has little or no conservatism for a large class of systems and can analyze systems of up to 20 coupled PDEs.
Abstract
Proofs of the Lemmas in "A New State-Space Representation for Coupled PDEs and Scalable Lyapunov StabilityAnalysis in the SOS Framework". These proofs are not compressed in order to allow for easier review and verification.The proofs are relatively straightforward and almost all manipulation in all proofs is based on three basic ways to use indicator functions to change the order of integration.