We report dynamics of skyrmion bubbles driven by spin-transfer torque in achiral ferromagnetic nanostripes using micromagnetic simulations. In a three-dimensional uniaxial ferromagnet with a quality factor that is smaller than 1, the skyrmion bubble is forced to stay at the central nanostripe by a repulsive force from the geometry border. The coherent motion of skyrmion bubbles in the nanostripe can be realized by increasing the quality factor to ~3.8. Our results should propel the design for future spintronic devices such as artificial neural computing and racetrack memory based on dipole-stabilized skyrmion bubbles.