2023
DOI: 10.1109/access.2023.3272032
|View full text |Cite
|
Sign up to set email alerts
|

Stabilizing and Improving Training of Generative Adversarial Networks Through Identity Blocks and Modified Loss Function

Abstract: Generative adversarial networks (GANs) are a powerful tool for synthesizing realistic images, but they can be difficult to train and are prone to instability and mode collapse. This paper proposes a new model called Identity Generative Adversarial Network (IGAN) that addresses these issues. This model is based on three modifications to the baseline deep convolutional generative adversarial network (DCGAN). The first change is to add a non-linear identity block to the architecture. This will make it easier for … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
references
References 40 publications
0
0
0
Order By: Relevance