Borrelia burgdorferi is a flat-wave, motile spirochete that causes Lyme disease. Motility is provided by periplasmic flagella (PFs) located between the cell cylinder and an outer membrane sheath. The structure of these PFs, which are composed of a basal body, a hook, and a filament, is similar to the structure of flagella of other bacteria. To determine if hook formation influences flagellin gene transcription in B. burgdorferi, we inactivated the hook structural gene flgE by targeted mutagenesis. In many bacteria, completion of the hook structure serves as a checkpoint for transcriptional control of flagellum synthesis and other chemotaxis and motility genes. Specifically, the hook allows secretion of the anti-sigma factor FlgM and concomitant late gene transcription promoted by 28 . However, the control of B. burgdorferi PF synthesis differs from the control of flagellum synthesis in other bacteria; the gene encoding 28 is not present in the genome of B. burgdorferi, nor are any 28 promoter recognition sequences associated with the motility genes. We found that B. burgdorferi flgE mutants lacked PFs, were rod shaped, and were nonmotile, which substantiates previous evidence that PFs are involved in both cell morphology and motility. Although most motility and chemotaxis gene products accumulated at wild-type levels in the absence of FlgE, mutant cells had markedly decreased levels of the flagellar filament proteins FlaA and FlaB. Further analyses showed that the reduction in the levels of flagellin proteins in the spirochetes lacking FlgE was mediated at the posttranscriptional level. Taken together, our results indicate that in B. burgdorferi, the completion of the hook does not serve as a checkpoint for transcriptional regulation of flagellum synthesis. In addition, we also present evidence that the hook protein in B. burgdorferi forms a high-molecular-weight complex and that formation of this complex occurs in the periplasmic space.Borrelia burgdorferi, the causative agent of Lyme disease, is a spirochete with a characteristic flat-wave morphology (24, 25; for a review, see reference 12). As a result of their unusual morphology, B. burgdorferi and other spirochete species have a highly specialized ability that allows them to traverse viscous gellike media (8). This unique swimming ability enables these bacteria to penetrate into specific host connective tissues and ecological niches (43). The importance of motility as a virulence factor has been implicated in several spirochete species, including Treponema denticola (42), Brachyspira hyodysenteriae (54), Borrelia garinii (60), and B. burgdorferi (10, 56).Motility in B. burgdorferi is provided by bundles of between 7 and 11 periplasmic flagella (PFs) that are subterminally attached near the cell ends. These PFs extend inward along the cell cylinder beneath an outer membrane sheath (6,24,28,46). B. burgdorferi PFs have a structure similar to that of flagella of other bacteria; a PF is composed of a basal body, a hook, and a filament containing a single major ...