Plasmid-based Escherichia coli BL21(DE3) expression systems are extensively used for the production of recombinant proteins. However, the combination of a high gene dosage with strong promoters exerts extremely stressful conditions on producing cells, resulting in a multitude of protective reactions and malfunctions in the host cell with a strong impact on yield and quality of the product. Here, we provide in-depth characterization of plasmid-based perturbations in recombinant protein production. A plasmid-free T7 system with a single copy of the gene of interest (GOI) integrated into the genome was used as a reference. Transcriptomics in combination with a variety of process analytics were used to characterize and compare a plasmid-free T7-based expression system to a conventional pET-plasmid-based expression system, with both expressing human superoxide dismutase in fed-batch cultivations. The plasmid-free system showed a moderate stress response on the transcriptional level, with only minor effects on cell growth. In contrast to this finding, comprehensive changes on the transcriptome level were observed in the plasmid-based expression system and cell growth was heavily impaired by recombinant gene expression. Additionally, we found that the T7 terminator is not a sufficient termination signal. Overall, this work reveals that the major metabolic burden in plasmid-based systems is caused at the level of transcription as a result of overtranscription of the multicopy product gene and transcriptional read-through of T7 RNA polymerase. We therefore conclude that the presence of high levels of extrinsic mRNAs, competing for the limited number of ribosomes, leads to the significantly reduced translation of intrinsic mRNAs. P lasmid-based expression systems have been used for the production of recombinant proteins for more than 4 decades (1, 2). They can be manipulated quickly and easily, and a variety of replicons for use in Escherichia coli have become available (3), allowing, e.g., different expression levels by using plasmids with different copy numbers (4, 5). Plasmids equipped with additional functions can be used to facilitate, for instance, coexpression of proteins assisting correct folding (6) or of tRNAs supporting transcription of rare codons (7). The dissemination of E. coli systems was further strongly supported by the availability of well-established, easy-to-use protocols from molecular manipulation to cell cultivation up to a large scale (8) and by the FDA-proven status of E. coli as a host for production of proteins for clinical use (9).However, E. coli-based production processes are still far from optimal for exploitation of the cellular system, as the expression of heterologous proteins is performed with excessive strength, leading to a rapid exhaustion of the host cell (10) and, hence, loss of yield. One prominent example is the T7 system, combining highcopy-number plasmids with an orthogonal transcription system in the form of the T7 phage RNA polymerase, an enzyme showing an average elongation ...