Background:
Adequate adaptation of the autonomic nervous system (ANS) is crucial in potentially life-threatening situations. The defence cascade provides a descriptive model of progressing dominant physiological reactions in such situations, including cardiovascular parameters and body mobility. The empirical evidence for this model is scarce, and the influence of physiological reactions in this model for predicting trauma-induced intrusions is unresolved.
Objectives:
Using a trauma-film paradigm, we aimed to test physiological reactions to a highly stressful film as an analogue to a traumatic event along the defence cascade model. We also aimed to examine the predictive power of physiological activity for subsequent intrusive symptoms.
Method:
Forty-seven healthy female participants watched a stressful and a neutral film in randomized order. Heart rate (HR), heart rate variability (HRV), and body sway were measured. Participants tracked frequency, distress, and quality of subsequent intrusions in a diary for 7 consecutive days.
Results:
For the stressful film, we observed an initial decrease in HR, followed by an increase, before the HR stabilized at a high level, which was not found during the neutral film. No differences in HRV were observed between the two films. Body sway and trembling frequency were heightened during the stressful film. Neither HR nor HRV predicted subsequent intrusions, whereas perceived distress during the stressful film did.
Conclusions:
Our results suggest that the physiological trauma-analogue response is characterized by an orientation response and subsequent hyperarousal, reaching a high physiological plateau. In contrast to the assumptions of the defence cascade model, the hyperarousal was not followed by downregulation. Potential explanations are discussed. For trauma-associated intrusions in the subsequent week, psychological distress during the film seems to be more important than physiological distress. Understanding the interaction between physiological and psychological responses during threat informs the study of ANS imbalances in mental disorders such as post-traumatic stress disorder.