Abstract:Abstract:Compressive principal component pursuit (CPCP) recovers a target matrix that is a superposition of low-complexity structures from a small set of linear measurements. Pervious works mainly focus on the analysis of the existence and uniqueness. In this paper, we address its stability. We prove that the solution to the related convex programming of CPCP gives an estimate that is stable to small entry-wise noise. We also provide numerical simulation results to support our result. Numerical results show th… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.