Although applied over extremely short timescales, artificial selection has dramatically altered the form, physiology, and life history of cultivated plants. We have used RNAseq to define both gene sequence and expression divergence between cultivated tomato and five related wild species. Based on sequence differences, we detect footprints of positive selection in over 50 genes. We also document thousands of shifts in gene-expression level, many of which resulted from changes in selection pressure. These rapidly evolving genes are commonly associated with environmental response and stress tolerance. The importance of environmental inputs during evolution of gene expression is further highlighted by large-scale alteration of the light response coexpression network between wild and cultivated accessions. Human manipulation of the genome has heavily impacted the tomato transcriptome through directed admixture and by indirectly favoring nonsynonymous over synonymous substitutions. Taken together, our results shed light on the pervasive effects artificial and natural selection have had on the transcriptomes of tomato and its wild relatives.domestication | biotic stress | abiotic stress D omestication has long served as an important example of severe phenotypic divergence in response to selection. Darwin recognized the parallel between the processes of domestication and adaptation in the wild and used this analogy to emphasize the power of selection in generating phenotypic diversity (1). The genetic basis of domestication-associated phenotypes has been examined in several instances, most notably in maize, rice, tomato, and dogs (reviewed in refs. 2-5). The clear conclusion from these studies is that the rapid phenotypic divergence associated with domestication is often attributable to very few genetic loci (6). Improvements to DNA sequence technologies have allowed studies of the effect of domestication at the whole-genome level. Early population genetic analyses in maize found that very few genes (∼5%) show evidence of positive selection during domestication of maize (7), and recent work using whole-genome resequencing has found a similar proportion of the genome was under positive selection (8). Evidence for strong selective sweeps at a limited number of loci has also been found in rice and dog genomes (9). Together with the previous genetic mapping work, these studies support the model that relatively few mutations experienced extremely strong selection by humans during domestication.Although not the target of direct positive selection, the rest of the genome still experiences a dramatic shift in evolutionary pressures during domestication. Most characterized domestication events are associated with an extreme genetic bottleneck and alleviation of selective constraints in the original niche (10). These factors are predicted to increase the relative rate of nonsynonymous to synonymous (dN/dS) substitution, potentially resulting in the fixation of deleterious alleles (11). Previous studies comparing the distribution ...