Vertebrate nonmuscle cells express two actin isoforms: cytoplasmic -and ␥-actin. Because of the presence and localized translation of -actin at the leading edge, this isoform is generally accepted to specifically generate protrusive forces for cell migration. Recent evidence also implicates -actin in gene regulation. Cell migration without -actin has remained unstudied until recently and it is unclear whether other actin isoforms can compensate for this cytoplasmic function and/or for its nuclear role. Primary mouse embryonic fibroblasts lacking -actin display compensatory expression of other actin isoforms. Consistent with this preservation of polymerization capacity, -actin knockout cells have unchanged lamellipodial protrusion rates despite a severe migration defect. To solve this paradox we applied quantitative proteomics revealing a broad genetic reprogramming of -actin knockout cells. This also explains why reintroducing -actin in knockout cells does not restore the affected cell migration. Pathway analysis suggested increased Rho-ROCK signaling, consistent with observed phenotypic changes. We therefore developed and tested a model explaining the phenotypes in -actin knockout cells based on increased Rho-ROCK signaling and increased TGF production resulting in increased adhesion and contractility in the knockout cells. Inhibiting ROCK or myosin restores migration of -actin knockout cells indicating that other actins compensate for -actin in this process. Consequently, isoactins act redundantly in providing propulsive forces for cell migration, but -actin has a unique nuclear function, regulating expression on transcriptional and post-translational levels, thereby preventing myogenic differentiation.