A classical theorem of Alexandroff states that every n-dimensional compactum X contains an n-dimensional Cantor manifold. This theorem has a number of generalizations obtained by various authors. We consider extension-dimensional and infinite dimensional analogs of strong Cantor manifolds, Mazurkiewicz manifolds, and V n -continua, and prove corresponding versions of the above theorem. We apply our results to show that each homogeneous metrizable continuum which is not in a given class C is a strong Cantor manifold (or at least a Cantor manifold) with respect to C. Here, the class C is one of four classes that are defined in terms of dimension-like invariants. A class of spaces having bases of neighborhoods satisfying certain special conditions is also considered.