2020
DOI: 10.1007/s00453-019-00636-y
|View full text |Cite
|
Sign up to set email alerts
|

Stable Matchings with Covering Constraints: A Complete Computational Trichotomy

Abstract: Stable matching problems with lower quotas are fundamental in academic hiring and ensuring operability of rural hospitals. Only few tractable (polynomial-time solvable) cases of stable matching with lower quotas have been identified; most such problems are NP-hard and also hard to approximate (Hamada et al. in Algorithmica 74(1):440-465, 2016). We therefore consider stable matching problems with lower quotas under a relaxed notion of tractability, namely fixed-parameter tractability. By cloning hospitals we fo… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
5
1
1

Relationship

1
6

Authors

Journals

citations
Cited by 11 publications
(9 citation statements)
references
References 46 publications
0
9
0
Order By: Relevance
“…They show that both these problems are NP-hard and cannot be approximated within 21 19 − ϵ, ϵ > 0 unless P = NP. These hardness results hold when the quotas are at most 1 and under other severe restrictions.…”
Section: Optimality Notions and Known Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…They show that both these problems are NP-hard and cannot be approximated within 21 19 − ϵ, ϵ > 0 unless P = NP. These hardness results hold when the quotas are at most 1 and under other severe restrictions.…”
Section: Optimality Notions and Known Resultsmentioning
confidence: 99%
“…In the two-sided preference model, Parameterized Complexity is well-studied [18,17,9,2,19]. In [17] and [2], they study the well-known NP-hard problem -computing a maximum size stable matching in the stable marriage setting (a special case of HR setting, where the two sets represent men and women and the upper-quotas are 1) where the preference lists are incomplete and contain ties.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…First, to better understand the NPcompleteness result, one may study the parameterized complexity with respect to the "degree" of incompleteness of the input preferences, such as the number of ties or the number of agents that are in the same equivalence class of the tie-relation. We refer to some recent papers on the parameterized complexity of preference-based stable matching problems [1,11,12,[14][15][16]29,[40][41][42]45] for this line of research. Second, we were not able to settle the computational complexity for complete preferences that are also single-peaked and single-crossing.…”
Section: Resultsmentioning
confidence: 99%
“…In its origin, this algorithm is illustrated in the matching process between equal number of men and women [10]. In practical, this algorithm is used in the matching process between colleges and students [12] and between hospitals and residents [13]. This algorithm also has been implemented in New York school admission system [14].…”
Section: Introductionmentioning
confidence: 99%