Stable Millivolt Range Resistive Switching in Percolating Molybdenum Nanoparticle Networks
Adrianus Julien Theodoor van der Ree,
Majid Ahmadi,
Gert H. Ten Brink
et al.
Abstract:To overcome the limitations of the conventional Von Neumann architecture, inspiration from the mammalian brain has led to the development of nanoscale neuromorphic networks. In the present research, molybdenum nanoparticles (NPs), which were produced by means of gas phase condensation based on magnetron sputtering, are shown to be the constituents of electrically percolating networks that exhibit stable, complex, neuron-like spiking behavior at low potentials in the millivolt range, satisfying well the require… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.