Recently, a novel parametric model order reduction formulation has been derived for vibroacoustic systems that allows for the reduction of systems with low-rank parametric changes [1]. This scheme does not require sampling of the parameter space, in contrast to conventional parametric model reduction techniques. This means that a single reduction basis, obtained with conventional non-parametric model order reduction schemes, can be used for a wide range of parameter values. This is done by rewriting the system in a non-parametric form, in which the low-rank contributions act as inputs. A disadvantage of this scheme is that the size of the input matrix scales with the amount of chosen parameters, leading to a potentially large reduced basis when many parameters are considered.