Tungsten disulfide (WS2) as one of transition metal dichalcogenides exhibits excellent catalytic activity. However, its catalytic performances in aqueous phase reactions are limited by its hydrophobicity. Here, the natural hydrophilic two-dimensional clay was used to enhance the dispersibility of WS2 in aqueous phase. WS2/montmorillonite (WS2/MMT) composite nanosheets were prepared via hydrothermal synthesis of WS2 on the surface of montmorillonite from WCl6 and CH3CSNH2. The microstructure and morphology show that WS2 nanosheets are assembled parallelly on the montmorillonite with the interface interaction. Through the support of montmorillonite, WS2/MMT possesses higher photocatalytic ability for aqueous phase reactions than WS2, which could be due to the synergistic effect of higher adsorption property, higher hydrophilicity, dispersibility and more catalytic reaction site. The strategy could provide new ideas for obtaining novel hydrophilic photocatalyst with excellent performance.