SEG Technical Program Expanded Abstracts 2015 2015
DOI: 10.1190/segam2015-5720421.1
|View full text |Cite
|
Sign up to set email alerts
|

Stable nonlinear predictive operator based on neural network, genetic algorithm and controlled gradient method

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2017
2017
2017
2017

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 18 publications
0
2
0
1
Order By: Relevance
“…The study focused on sensitivity analysis of operational parameters and how their interactions affected the co-optimization process. Several studies in the petroleum industry have focused on the use of neural network (NN) concept in optimization processes [34][35][36][37][38][39]. This approach is based on trial and error.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The study focused on sensitivity analysis of operational parameters and how their interactions affected the co-optimization process. Several studies in the petroleum industry have focused on the use of neural network (NN) concept in optimization processes [34][35][36][37][38][39]. This approach is based on trial and error.…”
Section: Introductionmentioning
confidence: 99%
“…This approach is based on trial and error. Mathematical details and the robustness of NN optimization technology were discussed in the literature [23,37].…”
Section: Introductionmentioning
confidence: 99%
“…Для обучения нейронных сетей мы используем гибридные алгоритмы обучения (Kobrunov A., I. Priezzhev, 2015, Kobrunov A., I. Priezzhev, 2016, основные на сочетании методов генерализации первых слоев для глубоких сетей, генетических и градиентных алгоритмов методов оптимизации решений. Основная идея предлагаемой технологии -комбинировать стохастические и детерминированные подходы при построении прогнозирующего оператора на этапе обучения.…”
Section: рисунок 1 многослойный персептронunclassified