We review some aspects of the dramatic consequences of supersymmetry breaking on string vacua. In particular, we focus on the issue of vacuum stability in tendimensional string models with broken, or without, supersymmetry, whose perturbative spectra are free of tachyons. After formulating the models at stake, we introduce their unified low-energy effective description and present a number of vacuum solutions to the classical equations of motion. In addition, we present a generalization of previous no-go results for de Sitter vacua in warped flux compactifications. Then we analyze the classical and quantum stability of these vacua, studying linearized field fluctuations and bubble nucleation. Then, we describe how the resulting instabilities can be framed in terms of brane dynamics, examining in particular brane interactions, back-reacted geometries and commenting on a brane-world string construction along the lines of a recent proposal. After providing a summary, we conclude with some perspectives on possible future developments.