2006
DOI: 10.4064/dm441-0-1
|View full text |Cite
|
Sign up to set email alerts
|

Stably flat completions of universal enveloping algebras

Abstract: We study localizations (in the sense of J. L. Taylor [70]) of the universal enveloping algebra, U (g), of a complex Lie algebra g. Specifically, let θ : U (g) → H be a homomorphism to some well-behaved [1] topological Hopf algebra H. We formulate some conditions on the dual algebra, H ′ , that are sufficient for H to be stably flat [52] over U (g) (i.e., for θ to be a localization). As an application, we prove that the Arens-Michael envelope, U (g), of U (g) is stably flat over U (g) provided g admits a positi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
35
1
3

Year Published

2006
2006
2020
2020

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 26 publications
(40 citation statements)
references
References 54 publications
1
35
1
3
Order By: Relevance
“…We remark that the first (second) result is in contrast to (in accordance with) the complex situation [7].…”
Section: Introductioncontrasting
confidence: 46%
See 1 more Smart Citation
“…We remark that the first (second) result is in contrast to (in accordance with) the complex situation [7].…”
Section: Introductioncontrasting
confidence: 46%
“…[7]). Vaguely speaking, a continuous ring extension between topological algebras θ : A → B is stably flat if the restriction functor θ * identifies the category of topological B-modules with a full subcategory of topological A-modules in a way that leaves certain homological relations invariant.…”
Section: Introductionmentioning
confidence: 99%
“…Теперь следует показать, что теорема 3 в свою очередь влечет, что канони-ческое вложение U (g) → O g (D r ) -слабая локализация в смысле работы [15]; в частности, тривиальный O g (D r )-модуль обладает резольвентой Кошуля, что мы продемонстрируем в следующем параграфе. § 6.…”
Section: алгебры фрешеunclassified
“…In the above situation, we say that ϕ extends ϕ (though ι A is not injective in general; see [5] or [11] for details).…”
Section: Preliminariesmentioning
confidence: 99%
“…If H is a bialgebra (resp., a Hopf algebra), then it is easy to show that the Arens-Michael envelope H is a ⊗-bialgebra (resp., a Hopf ⊗-algebra) in a natural way (for details, see [11]). …”
Section: Preliminariesmentioning
confidence: 99%