Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval 2017
DOI: 10.1145/3077136.3080815
|View full text |Cite
|
Sign up to set email alerts
|

Stacking Bagged and Boosted Forests for Effective Automated Classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
14
0
6

Year Published

2018
2018
2023
2023

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 19 publications
(20 citation statements)
references
References 17 publications
0
14
0
6
Order By: Relevance
“…Trends over time between visualization and data mining are revealed through spark lines appearing beside the concept label. Since the total number varies widely across concepts, we normalized the spark lines for each concept so that they reveal the relative number of papers [327], [335], [339] word/phrase/entity-level (679) [4], [286], [289] document-level (288) [14], [252], [376] hybrid (387) [40], [155], [349] model inference (1335) non-probabilistic inference (267) [91], [101], [336] probabilistic inference (1160) [185], [198], [360] modeling (3085) models for classification (1636) [45], [176], [216] models for clustering (908) [300], [301], [361] models for dimension reduction (247) [129], [221], [287] topic models (1089) [32], [33], [139] models for regression (256) [49], [149], [298] language model (271) [24], [89], [158] graphical models (187) [262], [268], [367] neural networks (412) [175], [193], [224] mixture models (128)…”
Section: Visualization Of Concept Relationsmentioning
confidence: 99%
“…Trends over time between visualization and data mining are revealed through spark lines appearing beside the concept label. Since the total number varies widely across concepts, we normalized the spark lines for each concept so that they reveal the relative number of papers [327], [335], [339] word/phrase/entity-level (679) [4], [286], [289] document-level (288) [14], [252], [376] hybrid (387) [40], [155], [349] model inference (1335) non-probabilistic inference (267) [91], [101], [336] probabilistic inference (1160) [185], [198], [360] modeling (3085) models for classification (1636) [45], [176], [216] models for clustering (908) [300], [301], [361] models for dimension reduction (247) [129], [221], [287] topic models (1089) [32], [33], [139] models for regression (256) [49], [149], [298] language model (271) [24], [89], [158] graphical models (187) [262], [268], [367] neural networks (412) [175], [193], [224] mixture models (128)…”
Section: Visualization Of Concept Relationsmentioning
confidence: 99%
“…A decisão fi-nalé influenciada pela acurácia de cada floresta. Outro grupo de classificadoresé o BERT [Campos et al 2017], um algoritmo baseado no BROOF, que troca os classificadores base de florestas pelos deárvores extremamente aleatórias. A adição de aleatoriedade na escolha do ponto de corte dos valores do atributo permite diminuir a variância, fornece meios para diminuir o viés, e assim, se torna mais robusto a presença de ruídos nos dados.…”
Section: Classificação De Documentosunclassified
“…Foram usados quatro conjuntos textuais do mundo real, relacionados com artigos de ciência da computação (ACM), notícias (20NG e Reuters) e páginas web (4UNI). Todos os conjuntos foram processados previamente e adequados por [Campos et al 2017], como remoção de stopwords e de alguns atributos de baixa frequência (abaixo de 6). Todos os conjuntos são compostos de vários vetores com atributos TF-IDF.…”
Section: Conjuntos De Dadosunclassified
See 2 more Smart Citations