The importance of the 2'-deoxyguanosine-uridine mispair as the most occurring mismatch in transcriptional studies of RNAs from DNAs is multiplied when 5-halo-substituted uridine species cause a serious increase in the probability of its occurrence. Many studies relate this higher probability to the existence of possible tautomeric and ionic forms of its constituent bases. According to these statements, relative populations of mismatches between 5-fluorouridine and both keto and enol forms of 2'-deoxyguanosine are computed by using a conformational search. In order to have a complete scan of all of the highly probable conformers in a moderate computational time, an extensive conformational search methodology is employed here, which benefits from the advantages of both the molecular dynamics simulations and quantum mechanics calculations. The population of an enolic tautomer of normal wobble orientation is about 0.057% of that of its keto tautomer, whereas the population of an enolic tautomer of reverse wobble orientation is about 0.0054% of that of its keto tautomer. Totally, the reverse wobble orientation is about six times more populated than the normal wobble orientation. Calculated populations are in good agreement with experimental populations of closely related compounds. The reliability of the applied methodology is certified, in part, by a good agreement obtained between some experimental data and corresponding Boltzmann-weighted average data of most probable conformers such as NMR parameters. The validation of this methodology is certified with high accuracy by applying it on the substituted diuridine pairs, where experimental populations are available. Not only are the calculated populations and NMR parameters of this test in very good agreement with the experimental data, but also they are free of the ambiguities mentioned by experimentalists.