Молекулярные переключатели на основе азобензола (азо) являются светочувствительными молекулами, которые могут переключаться между двумя конфигурационными состояниями под действием света. Светочувствительные азо -монослои можно использовать для модуляции работы выхода, то есть они влияют на свойства электродов. В данной работе мы отвечаем на вопрос, что происходит со структурами, электронными свойствами и перераспределением заряда в монослоях азобитиофена (азо-бт) в зависимости от светового стимула, используя теорию функционала плотности. Моделируются два типа переключателей, различающихся расположением азо и бт от группы пришивки молекулы к поверхности: азо-бт и бт-азо . Один из них (бт-азо) описан в литературе, другой же является продуктом молекулярного дизайна. Мы описываем транс- и цис-изомеры для каждого переключателя, находящегося в контакте с кластером золота. Наше моделирование объясняет гигантское соотношение в проводимости ON/OFF-состояний при воздействии УФ-излучения на монослой улучшенной электронной связью между цис-изомерами (состояние ON) и кластером золота. Транс-изомеры же (OFF состояние) моделируемых переключателей играют роль изоляторов. Кроме того, мы показываем, какие именно свойства улучшаются после молекулярного дизайна. Данное исследование открывает новые возможности в разработке инновационных модификаций поверхности электродов.
Molecular switches based on azobenzene (azo) are defined as light-responsive molecules which can change between two configurational states under light stimuli. Responsive azo monolayers can be used to modulate the work function, i.e. they tune the properties of the interfaces at the electrodes. In this work, we investigate what happens to the structures, electronic properties, and the charge redistribution within azo-bithiophene (azo-bt) monolayers depending on the light stimulus using density functional theory. Two types of switches differing in the order of azo and bt counting from the anchor group are modelled: azo-bt and bt-azo . One of them (bt-azo) is known from the literature, the remaining one is a product of rational design. We describe trans- and cis-isomers for each switch being in a contact with a gold cluster. Our simulations explain a giant ON/OFF conductance ratio upon UV light stimulus by improved electronic coupling between the cis-isomers (ON-state) and the gold cluster. The trans-isomers (OFF-state) of the simulated switches play the role of the insulators. Moreover, we show which molecular properties are enchanced by molecular design. This study opens up new avenues to the development of the innovative design of electrode surface modifications.