We study electron and hole injection in MoO3 charge generation layers (CGLs) commonly used for establishing balanced injection in multilayer stacked organic light-emitting diodes (SOLEDs). A compound CGL consisting of 100-Å-thick MoO3 and Li-doped 4,7-diphenyl-1,10-phenanthroline in a 1:1 molar ratio is demonstrated to have a high electron generation efficiency. Charge injection from the compound CGL is modeled based on a two-step process consisting of tunneling-assisted thermionic emission over an injection barrier of (1.2±0.2) eV and a trap level due to oxygen vacancies at (0.06±0.01) eV above the MoO3 valence band edge. Peak external quantum efficiencies (EQEs) of (10.5±0.2)%, (10.1±0.2)%, (8.6±0.2)%, and (8.9±0.2)% are obtained for tris-(phenylpyridine)iridium-based electrophosphorescent OLEDs with indium tin oxide (ITO) anode/CGL cathode, CGL anode/CGL cathode, CGL anode/Al cathode, and ITO anode/Al cathode contacts, respectively. Based on our analysis, a three-element green emitting electrophosphorescent SOLED is demonstrated with a peak forward-viewing EQE=(24.3±1.0)% and a power efficiency of (19±1) lm/W.