2019
DOI: 10.3934/mine.2019.2.359
|View full text |Cite
|
Sign up to set email alerts
|

Stages of dynamics in the Fermi-Pasta-Ulam system as probed by the first Toda integral

Abstract: We investigate the long term evolution of trajectories in the Fermi-Pasta-Ulam (FPU) system, using as a probe the first non-trivial integral J in the hierarchy of integrals of the corresponding Toda lattice model. To this end we perform simulations of FPU-trajectories for various classes of initial conditions produced by the excitation of isolated modes, packets, as well as 'generic' (random) initial data. For initial conditions corresponding to localized energy excitations, J exhibits variations yielding 'sig… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
7
0

Year Published

2020
2020
2025
2025

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(9 citation statements)
references
References 38 publications
2
7
0
Order By: Relevance
“…As the J (k) 's are conserved along the Toda flow, and the FPUT chain is a perturbation of the Toda one, the Toda integrals are good candidates to be adiabatic invariants when computed along the FPUT flow. This intuition is supported by several numerical simulations, the first by Ferguson-Flaschka-McLaughlin [12] and more recently by other authors [4,6,10,20,35]. Such simulations show that the variation of the Toda integrals along the FPUT flow is very small on long times for initial data of small specific energy.…”
Section: Introduction and Main Resultsmentioning
confidence: 60%
See 1 more Smart Citation
“…As the J (k) 's are conserved along the Toda flow, and the FPUT chain is a perturbation of the Toda one, the Toda integrals are good candidates to be adiabatic invariants when computed along the FPUT flow. This intuition is supported by several numerical simulations, the first by Ferguson-Flaschka-McLaughlin [12] and more recently by other authors [4,6,10,20,35]. Such simulations show that the variation of the Toda integrals along the FPUT flow is very small on long times for initial data of small specific energy.…”
Section: Introduction and Main Resultsmentioning
confidence: 60%
“…We are left to estimate (6.6) for FPUT, but this is exactly the quantity bounded in Proposition 5.1. We conclude that 10) for some constant C j > 0, j = 1, 2, 3 and for β > β 0 and N > N 0 . Combing Proposition 5.3 with (6.10) we obtain…”
Section: Proof Of Theorem 21mentioning
confidence: 60%
“…As the J pkq 's are conserved along the Toda flow, and the FPUT chain is a perturbation of the Toda one, the Toda integrals are good candidates to be adiabatic invariants when computed along the FPUT flow. This intuition is supported by several numerical simulations, the first by Ferguson-Flaschka-McLaughlin [12] and more recently by other authors [4,6,10,19,34]. Such simulations show that the variation of the Toda integrals along the FPUT flow is very small on long times for initial data of small specific energy.…”
mentioning
confidence: 60%
“…A more complete interpretation of the FPU paradox was provided by our group [6], where we introduced the concept of q-tori, reconciling q-breathers with the metastable packets of lowfrequency modes. Now we shall use the GALI indices to study the stability of these q-tori and the breakdown of the associated FPU recurrences.…”
Section: Behavior Of Gali 2 For Regular Motionmentioning
confidence: 99%
“…The interesting question that arises, therefore, is whether a statistical analysis of this orbit also shows that this orbit can also be characterized as weakly chaotic, by plotting the probability distributions of averaged sums of its coordinates, as was done above for the orbit shown in Figure 16. for a total integration time t=10 6 . Right: Final integration time t =10 10 .…”
Section: The Case Of Multi-degree-of Freedom Hamiltonian Systemsmentioning
confidence: 99%