Abstract:We extend the classical Stallings theory (describing subgroups of free groups as automata) to direct products of free and abelian groups: after introducing enriched automata (i.e., automata with extra abelian labels), we obtain an explicit bijection between subgroups and a certain type of such enriched automata, which -as it happens in the free group -is computable in the finitely generated case.This approach provides a neat geometric description of (even non finitely generated) intersections of finitely gener… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.