Bog bilberry (Vaccinium uliginosum L.) is considered a highly valued non-wood forest product (NWFP) species with edible and medicinal uses in East Asia. It grows in the northeastern forests of China, where stand attributes and structure jointly determine its population characteristics and individuals’ growth. Mapping the regional distributions of its population characteristics can be beneficial in the management of its natural resources, and this mapping should be predicted using machine learning modeling to obtain accurate results. In this study, a total of 60 stands were randomly chosen and screened to investigate natural bog bilberry populations in the eastern mountains of Heilongjiang and Jilin provinces in northeastern China. Individual height, canopy cover area, and fresh weight all increased in stands at higher latitudes, and shoot height was also higher in the eastern stands. The rootstock grove density showed a polynomial quadratic distribution pattern along increasing topographical gradients, resulting in a minimum density of 0.43–0.52 groves m−2 in stands in the southern part (44.3016° N, 129.4558° E) of Heilongjiang. Multivariate linear regression indicated that the bog bilberry density was depressed by host forest tree species diversity; this was assessed using both the Simpson and Shannon–Wiener indices, which also showed polynomial quadratic distribution patterns (with a modeling minimum of 0.27 and a maximum of 1.21, respectively) in response to the increase in latitude. Structural equation models identified positive contributions of tree diameter at breast height and latitude to shoot height and a negative contribution of longitude to the bog bilberry canopy area. Random forest modeling indicated that dense populations with heavy individuals were distributed in eastern Heilongjiang, and large-canopy individuals were distributed in Mudanjiang and Tonghua. In conclusion, bog bilberry populations showed better attributes in northeastern stands where host forest trees had low species diversity, but the dominant species had strong trunks.