Plant disease severity is commonly estimated visually without or with the aid of standard area diagram sets (SADs). It is generally believed that the use of SADs leads to less biased (more accurate) and thus more precise estimates, but the degree of improvement has not been characterized in a systematic manner. We built on a previous review and screened 153 SAD studies published from 1990 to 2021. A systematic review resulted in a selection of 72 studies that reported three linear regression statistics for individual raters, which are indicative of the two components of bias (intercept = constant bias; slope = systematic bias) and precision (Pearson's correlation coefficient, r), to perform a meta-analysis of these accuracy components. The meta-analytic model determined an overall gain of 0.07 (r increased from 0.88 to 0.95) in precision. Globally, there was a reduction of 2.65 units in the intercept, from 3.41 to 0.76, indicating a reduction in the constant bias. Slope was least affected and was reduced slightly from 1.09 to 0.966, indicating marginally less systematic bias when using SADs. A multiple correspondence analysis suggested an association of less accurate, unaided estimates with diseases that produce numerous lesions and for which maximum severities of 50% are rarely attained. On the other hand, more accurate estimates were observed with diseases that cause only a few lesions and those diseases where the lesions coalesce and occupy more than 50% of the specimen surface. This was most pronounced for specimen types other than leaves. By quantitatively exploring how characteristics of the pathosystem and how SADs affect precision and constant and systematic biases, we affirm the value of SADs for reducing bias and imprecision of visual assessments. We have also identified situations where SADs have greater or lesser effects as an assessment aid.