2021
DOI: 10.1007/jhep11(2021)221
|View full text |Cite
|
Sign up to set email alerts
|

Standard Model EFTs via on-shell methods

Abstract: We present the Standard Model Effective Field Theories (SMEFT) from purely on-shell arguments. Starting from few basics assumptions such as Poincaré invariance and locality, we classify all the renormalisable and non-renormalisable interactions at lowest order in the couplings. From these building blocks, we review how locality and unitarity enforce Lie algebra structures to appear in the S-matrix elements together with relations among couplings (and hypercharges). Furthermore, we give a fully on-shell algorit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

1
57
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 52 publications
(58 citation statements)
references
References 151 publications
(213 reference statements)
1
57
0
Order By: Relevance
“…For instance, such methods have been applied to compute the anomalous dimension in generic EFTs [6][7][8][9][10][11][12][13][14], and to understand the patterns of zeros in the one-loop anomalous dimension matrix for dimension-six operators in the SMEFT [15][16][17] and in Wilson coefficients when integrating out heavy modes [18]. In the study of gravitational binary systems, scattering amplitude techniques allowed to compute the conservative two-body scattering dynamics up to O(G 4 ) in all orders in velocity [19][20][21][22][23][24][25][26][27][28][29], and to lower orders in G including spin effects [22,[30][31][32][33][34][35][36][37], tidal effects [38][39][40][41][42] and higher-derivative interactions [43,44].…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…For instance, such methods have been applied to compute the anomalous dimension in generic EFTs [6][7][8][9][10][11][12][13][14], and to understand the patterns of zeros in the one-loop anomalous dimension matrix for dimension-six operators in the SMEFT [15][16][17] and in Wilson coefficients when integrating out heavy modes [18]. In the study of gravitational binary systems, scattering amplitude techniques allowed to compute the conservative two-body scattering dynamics up to O(G 4 ) in all orders in velocity [19][20][21][22][23][24][25][26][27][28][29], and to lower orders in G including spin effects [22,[30][31][32][33][34][35][36][37], tidal effects [38][39][40][41][42] and higher-derivative interactions [43,44].…”
Section: Introductionmentioning
confidence: 99%
“…This means that from the S-matrix perspective the classification and enumeration of independent operators [45][46][47][48][49] is equivalent to finding a basis of kinematically independent polynomial structures in the amplitudes [50,51]. From these "building blocks", higher-point tree-level amplitudes can be constructed from the knowledge of the factorisation channels, using recursion relations [12,[52][53][54][55][56][57], and loop-level amplitudes through generalised unitarity techniques [58][59][60][61][62][63][64].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…On-shell scattering amplitude is efficient in dealing with some problems of EFT, such as calculating the running of EFT operators [13][14][15][16][17][18][19], deriving EFT selecting rules [20][21][22], and constructing scalar EFT with nontrivial soft-limit [23][24][25][26]. Especially it is very efficient in constructing EFT bases of massless fields (called amplitude bases) [19,[27][28][29][30].…”
Section: Introductionmentioning
confidence: 99%
“…On-shell scattering amplitude is efficient in dealing with some problems of EFT, such as calculating the running of EFT operators [13][14][15][16][17][18][19], deriving EFT selecting rules [20][21][22], and constructing scalar EFT with nontrivial soft-limit [23][24][25][26]. Especially it is very efficient in constructing EFT bases of massless fields (called amplitude bases) [19,[27][28][29][30]. A complete set of the amplitude bases without IBP and EOM redundancy can be systematically constructed by the semi-standard Young tableaus (SSYTs) of the global symmetry of massless spinors [31] (more applications can be found in [32,33]).…”
Section: Introductionmentioning
confidence: 99%