BackgroundCochlear implant (CI) insertion depth can affect residual hearing preservation, tonotopic range coverage, and Mapping. Therefore, determining insertion depth has the potential to maximize CI performance. A post-op skull X-RAY is commonly used to assess insertion depth, however its effectiveness has not been well established. Our primary objective was to assess the accuracy of post-op skull X-RAYs to determine insertion depth, compared to CT as the gold standard. Secondary objectives were to compare experience level of raters and different skull X-RAY views.MethodsThirteen patients with Advanced Bionic HiRes 90 K implants, and post-operative temporal bone CT scans were selected from the CI database at Sunnybrook Health Sciences Centre. Medical students, otology fellows, and CI surgeons evaluated insertion depths on post-op skull X-RAYs, while neuroradiologists evaluated CT scans. Descriptive statistics, regression analysis, and paired t-tests were used to compare the two types of imaging.ResultsX-RAYs and CTs provided an equivalent mean insertion depth of 337 degrees (p = 0.93), a mean difference of − 0.9 degrees and a standard deviation of paired differences of 43 degrees. Although means were similar across rater groups, CI surgeons (45 degrees) had the lowest standard deviation of paired differences. Comparing X-RAY views, Caldwell (29 degrees) had less variation than Towne (59 degrees) for standard deviation of paired differences.ConclusionsSkull X-RAYs provide accurate and reliable measurements for CI insertion depth. The Caldwell view alone may be sufficient for evaluations of insertion depth, and experience has a minor impact on the variability of estimates.Electronic supplementary materialThe online version of this article (10.1186/s40463-018-0304-9) contains supplementary material, which is available to authorized users.