The objective of this paper is to demonstrate how both Distributed Acoustic Sensing (DAS) and Distributed Temperature Sensing (DTS) data, acquired using a fiber-optic cable installed and cemented behind a 7" production casing, could be used for single-phase production allocation in two conventional oil producers in the South of the Sultanate of Oman.
DAS data can be processed, time-averaged, and filtered to specific frequency bands, to identify and monitor the acoustic frequencies that are excited by the flow through the perforation tunnels. It will be shown that under certain assumptions, the flow-induced acoustic amplitudes at the perforations can be calibrated and converted into actual flow rates, which allows for continuous production profiling across all intervals of interest.
DTS data, acquired under transient conditions, can also be analyzed using a thermal simulation model, to allocate production to specific perforation intervals, provided an appropriate logging program is followed. DTS is not as good as DAS in capturing dynamic changes to the inflow profile, but does have a deeper depth of investigation and is less sensitive to the geometry of the perforation tunnels or possible flow obstructions in the wellbore. The two technologies are therefore complimentary and are best acquired simultaneously.
This is the first case study in the Sultanate of Oman, where both DAS and DTS data sets were successfully acquired and interpreted for single-phase production profiling in a conventional oil producer with perforated casing. Moreover, it was also the first time in Oman that oriented perforation was achieved with full shot density, through a double perforation run with a slight offset in orientation angle between the two runs.