An accurate stator resistance and inductance are necessary for high-performance permanent magnet synchronous motor (PMSM) control. The stator resistance and inductance can be estimated during motor standstill operation. This study proposes a standstill estimation method for the determination of dq-axis inductances and resistance of a PMSM drive system fed by a conventional voltage source inverter (VSI). The proposed method estimates both inductance and the rotor's position using the same algorithm, and knowledge of its initial position is not required. The d- and q-axis inductances were estimated by applying three short-time voltage pulses and measuring phase current peak values. The stator's resistance is estimated by monitoring the exponential decay process of the direct axis current. The method was verified by simulation and experiments conducted on two different PM synchronous motors. A good agreement of simulation and experimental results was obtained. Moreover, the proposed method is relatively simple and can identify stator resistance and inductance at any motor load condition. Compared to the existing parameter estimation strategies, the proposed estimation scheme has a relatively faster estimation time. Additionally, it is shown that the method accounts for the dead-time effect as well.