2022
DOI: 10.3847/1538-4357/ac63a1
|View full text |Cite
|
Sign up to set email alerts
|

Starduster: A Multiwavelength SED Model Based on Radiative Transfer Simulations and Deep Learning

Abstract: We present starduster, a supervised deep-learning model that predicts the multiwavelength spectral energy distribution (SED) from galaxy geometry parameters and star formation history by emulating dust radiative transfer simulations. The model is composed of three specifically designed neural networks, which take into account the features of dust attenuation and emission. We utilize the skirt radiative transfer simulation to produce data for the training data of neural networks. Each neural network can be trai… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 53 publications
0
4
0
Order By: Relevance
“…At the time of writing, there are many state-of-the-art SEDfitting tools. To give some examples among the most recently developed, we cite AGNfitter (Calistro Rivera et al 2016), BEAGLE (Chevallard & Charlot 2016), Pipe3D (Sánchez et al 2016), Prospector (Leja et al 2017;Johnson et al 2021), Dense Basis (Iyer & Gawiser 2017;Iyer et al 2019), FIREFLY (Wilkinson et al 2017), Lightning (Eufrasio 2017), Mr-Moose (Drouart & Falkendal 2018), BAGPIPES (Carnall et al 2018), FortesFit (Rosario 2019), PEGASE.3 (Fioc & Rocca-Volmerange 2019), X-CIGALE (Yang et al 2020), MCSED (Bowman et al 2020), MIRKWOOD (Gilda et al 2021), piXedfit (Abdurro'uf et al 2021), ProSpect (Thorne et al 2021), and Starduster (Qiu & Kang 2022). Machine-learning techniques are also advancing rapidly to provide redshift and physical parameter estimates for galaxies across a large redshift range, e.g., Davidzon et al (2019) and Simet et al (2021).…”
Section: Introductionmentioning
confidence: 99%
“…At the time of writing, there are many state-of-the-art SEDfitting tools. To give some examples among the most recently developed, we cite AGNfitter (Calistro Rivera et al 2016), BEAGLE (Chevallard & Charlot 2016), Pipe3D (Sánchez et al 2016), Prospector (Leja et al 2017;Johnson et al 2021), Dense Basis (Iyer & Gawiser 2017;Iyer et al 2019), FIREFLY (Wilkinson et al 2017), Lightning (Eufrasio 2017), Mr-Moose (Drouart & Falkendal 2018), BAGPIPES (Carnall et al 2018), FortesFit (Rosario 2019), PEGASE.3 (Fioc & Rocca-Volmerange 2019), X-CIGALE (Yang et al 2020), MCSED (Bowman et al 2020), MIRKWOOD (Gilda et al 2021), piXedfit (Abdurro'uf et al 2021), ProSpect (Thorne et al 2021), and Starduster (Qiu & Kang 2022). Machine-learning techniques are also advancing rapidly to provide redshift and physical parameter estimates for galaxies across a large redshift range, e.g., Davidzon et al (2019) and Simet et al (2021).…”
Section: Introductionmentioning
confidence: 99%
“…Deschamps et al 2015;Hendrix et al 2016;Mosenkov et al 2021;Ebenbichler et al 2022;Jáquez-Domínguez et al 2023), SKIRT is mainly used in an extragalactic context. It is used to generate images, spectra, spectral energy distributions, and polarisation maps for idealised galaxy models (Gadotti et al 2010;De Geyter et al 2014;Lee et al 2016;Lin et al 2021;Qiu & Kang 2022), for high-resolution models fitted to observed spiral galaxies (De Looze et al 2014;Viaene et al 2017Viaene et al , 2020Mosenkov et al 2018;Williams et al 2019;Verstocken et al 2020;Nersesian et al 2020a,b), and for simulated galaxies extracted from cosmological simulations (e.g. Saftly et al 2015;Trayford et al 2017;Rodriguez-Gomez et al 2019;Vogelsberger et al 2020b;Liang et al 2021;Hsu et al 2023;Cochrane et al 2023).…”
Section: The Skirt Radiative Transfer Codementioning
confidence: 99%
“…The authors of this first work show a reasonable reconstruction of the SFH and a decent robustness to domain changes. Qiu & Kang (2021) uses CNNs for the opposite task, that is, estimate the galaxy SED from the galaxy SFH taken from simulations. In this case deep learning acts as an emulator of radiative transfer codes.
Figure 24. CNN applied to reconstruct the Star Formation Histories of galaxies.
…”
Section: Deep Learning For Inferring Physical Properties Of Galaxiesmentioning
confidence: 99%