Maternal basking regime can affect gestation length in viviparous squamates, but effects on offspring phenotype in species with extended pregnancies and ability to delay the birth season are unclear. We investigated the effects of three maternal basking regimes on maternal thermoregulation, gestation length, pregnancy outcome and offspring phenotype in the gecko Woodworthia 'Otago/ Southland'. This long-lived (30+ years), nocturnal forager has field pregnancies lasting up to 14 months, with fully developed offspring maintained in utero over winter. Within regimes, we also compared outcomes for spontaneous (early) deliveries with those from induced (late) deliveries to test the 'adaptive prolongation of pregnancy' hypothesis. Although a cool regime significantly extended gestation, the effect was reduced by increased maternal basking, and embryonic development under the cool regime was just as successful. Offspring from spontaneous births (but not induced births) were smaller and grew more slowly when from the cool regime. However, induced offspring did not differ in consistent ways from those delivered spontaneously and offspring from all groups had high viability, similar use of warm retreat sites and similar sprint speeds. Thus, consistent evidence for adaptive prolongation of pregnancy was lacking. Unusually for squamates, pregnant females can begin vitellogenesis before giving birth, and a profound drop in maternal body temperature near the end of pregnancy (∼6.3°C, confirmed under the warm regime) may assist survival of embryos in utero. Female lizards that maintain fully developed embryos in utero have the potential to make complex trade-offs among birthdate, offspring phenotype and future reproduction.