Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose: The StartReact effect, whereby movements are elicited by loud, startling acoustic stimuli (SAS), allows the evaluation of movements when initiated through involuntary circuitry, before auditory feedback. When StartReact is applied during poststroke upper extremity movements, individuals exhibit increased muscle recruitment, reaction times, and reaching distances. StartReact releases unimpaired speech with similar increases in muscle recruitment and reaction time. However, as poststroke communication disorders have divergent neural circuitry from upper extremity tasks, it is unclear if StartReact will enhance speech poststroke. Our objective is to determine if (a) StartReact is present in individuals with poststroke aphasia and apraxia and (b) SAS exposure enhances speech intelligibility. Method: We remotely delivered startling, 105-dB white noise bursts (SAS) and quiet, non-SAS cues to 15 individuals with poststroke aphasia and apraxia during repetition of six words. We evaluated average word intensity, pitch, pitch trajectories, vowel formants F1 and F2 (first and second formants), phonemic error rate, and percent incidence of each SAS versus non–SAS-elicited phoneme produced under each cue type. Results: For SAS trials compared to non-SAS, speech intensity increased (∆ + 0.6 dB), speech pitch increased (∆ + 22.7 Hz), and formants (F1 and F2) changed, resulting in a smaller vowel space after SAS. SAS affected pitch trajectories for some, but not all, words. Non-SAS trials had more stops (∆ + 4.7 utterances) while SAS trials had more sustained phonemes (fricatives, glides, affricates, liquids; ∆ + 5.4 utterances). SAS trials had fewer distortion errors but no change in substitution errors or overall error rate compared to non-SAS trials. Conclusions: We show that stroke-impaired speech is susceptible to StartReact, evidenced by decreased intelligibility due to altered formants, pitch trajectories, and articulation, including increased incidence of sounds that could not be produced without SAS. Future studies should examine the impact of SAS on voluntary speech intelligibility and clinical measures of aphasia and apraxia.
Purpose: The StartReact effect, whereby movements are elicited by loud, startling acoustic stimuli (SAS), allows the evaluation of movements when initiated through involuntary circuitry, before auditory feedback. When StartReact is applied during poststroke upper extremity movements, individuals exhibit increased muscle recruitment, reaction times, and reaching distances. StartReact releases unimpaired speech with similar increases in muscle recruitment and reaction time. However, as poststroke communication disorders have divergent neural circuitry from upper extremity tasks, it is unclear if StartReact will enhance speech poststroke. Our objective is to determine if (a) StartReact is present in individuals with poststroke aphasia and apraxia and (b) SAS exposure enhances speech intelligibility. Method: We remotely delivered startling, 105-dB white noise bursts (SAS) and quiet, non-SAS cues to 15 individuals with poststroke aphasia and apraxia during repetition of six words. We evaluated average word intensity, pitch, pitch trajectories, vowel formants F1 and F2 (first and second formants), phonemic error rate, and percent incidence of each SAS versus non–SAS-elicited phoneme produced under each cue type. Results: For SAS trials compared to non-SAS, speech intensity increased (∆ + 0.6 dB), speech pitch increased (∆ + 22.7 Hz), and formants (F1 and F2) changed, resulting in a smaller vowel space after SAS. SAS affected pitch trajectories for some, but not all, words. Non-SAS trials had more stops (∆ + 4.7 utterances) while SAS trials had more sustained phonemes (fricatives, glides, affricates, liquids; ∆ + 5.4 utterances). SAS trials had fewer distortion errors but no change in substitution errors or overall error rate compared to non-SAS trials. Conclusions: We show that stroke-impaired speech is susceptible to StartReact, evidenced by decreased intelligibility due to altered formants, pitch trajectories, and articulation, including increased incidence of sounds that could not be produced without SAS. Future studies should examine the impact of SAS on voluntary speech intelligibility and clinical measures of aphasia and apraxia.
Speech production requires temporal coordination between the actions of different functional groupings of muscles in the human body. Crucially, such functionally organized units, or “modules”, may be susceptible to disruption by an external stimulus such as a startling auditory stimulus (SAS; >120dB), enabling a possible window into the internal structure of learned speech movements. Following on the observation that SAS is known to accelerate the release of pre-planned actions, the current study examines lip kinematics in SAS-induced responses during speech movements to test whether this accelerated release applies on the scale of entire syllables or on the scale of smaller functional units. Production measures show that SAS-elicited bilabial movements in [ba] syllables are prone to disruption as measured by discontinuity in velocity profiles. We use a 3D finite element method (FEM) biomechanical model to simulate the temporal interaction between muscle groupings in speech. Simulation results indicate that this discontinuity can be accounted for as an instance of temporally decoupled coordination across neuromuscular modules. In such instances, the muscle groupings controlling lip compression and jaw opening, which normally fire sequentially, appear more likely to be activated synchronously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.