Adrenomedullin (ADM) is important for tumor angiogenesis, tumor cell growth and survival. Under normoxic conditions, the ADM gene was found to produce two alternative transcripts, a fully-spliced transcript that produces AM and PAMP peptides and a intron-3-retaining transcript that produces a less functionally significant PAMP peptide only. ADM is a well-established hypoxia inducible gene; however, it is not clear which ADM isoform is induced by hypoxia. In this study, it was determined that various cancer and normal cells express two predominant types of ADM transcripts, a AM/PAMP peptide producing FL transcript in which all introns are removed, and a non-protein producing I1-3 transcript in which all introns are retained. Interestingly, hypoxia preferentially induced the FL isoform. Moreover, HIFs, but not hypoxia per se are necessary and sufficient to increase splicing of ADM pre-mRNA. ADM splicing reporters confirmed that transcriptional activation by HIF or other transcription factors is sufficient to enhance splicing. However, HIFs are more potent in enhancing ADM pre-mRNA splicing than other transcriptional activators. Thus, ADM intron retention is not a consequence of abnormal splicing, but is an important mechanism to regulate ADM expression. These results demonstrate a novel function of HIFs in regulating ADM expression by enhancing its pre-mRNA splicing. Importantly, using endogenous and cloned ADM gene, further evidence is provided for the coupling of transcription and RNA splicing.