This paper presents a stand-alone wind power system with battery/supercapacitor hybrid energy storage. A stand-alone wind power system mainly consists of a wind turbine, a permanent magnet synchronous generator, hybrid energy storage devices based on a vanadium redox flow battery and a supercapacitor, an AC/DC converter, two bidirectional DC/DC converters, a DC/AC converter and a variable load. Several control strategies for the stand-alone wind power system are involved such as a maximum power point tracking (MPPT) control, a vanadium redox flow battery charge/discharge control and a supercapacitor charge/discharge control. The proposed MPPT control combines a sliding mode control with an extreme search control to capture maximum wind energy. This strategy avoids the necessity of measuring wind velocity, obtaining models or parameters of the wind turbine and calculating the differentials of the power generated from the wind power system and from the speed of the generator. The battery charge/discharge control maintains a constant DC bus voltage. When the battery charging/discharging current reaches the setting threshold, the charge/discharge control of the supercapacitor is triggered to limit the charging/discharging current of the battery. The simulation results show that the proposed method can rapidly respond to variations in wind velocity and load power.