“…Influence-based abstraction is a form of state abstraction, which has a long tradition in AI planning and learning (e.g., Sacerdoti, 1974;Knoblock, 1993;McCallum, 1993;Dearden & Boutilier, 1997;Hoey, St-Aubin, Hu, & Boutilier, 1999;Givan, Leach, & Dean, 2000;Boutilier, Dearden, & Goldszmidt, 2000;Ravindran & Barto, 2003;Jong & Stone, 2005;Konidaris & Barto, 2009;Kaelbling & Lozano-Perez, 2012;Hostetler, Fern, & Dietterich, 2014;Anand, Noothigattu, Mausam, & Singla, 2016;Bai, Srivastava, & Russell, 2016;Abel, Arumugam, Asadi, Jinnai, Littman, & Wong, 2019) . Other types of abstraction (Mahadevan, 2010) are temporal abstractions, such as options and macro-actions (Sutton, Precup, & Singh, 1999;Theocharous & Kaelbling, 2004;Amato, Konidaris, Kaelbling, & How, 2019;Machado, Bellemare, & Bowling, 2017), and functional abstraction, which tries to identify appropriate basis functions (Keller, Mannor, & Precup, 2006;Parr, Painter-Wakefield, Li, & Littman, 2007;Mahadevan & Maggioni, 2007;Petrik, 2007), including the huge body of recent work on deep RL (Schmidhuber, 1991;Mnih et al, 2015;François-Lavet, Henderson, Islam, Bellemare, & Pineau, 2018).…”