Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Stress carries diverse implications for perceptual, cognitive, and affective functions. One population particularly susceptible to acute stress-induced cognitive changes are individuals with high-stress jobs (e.g., military personnel). These individuals are often tasked with maintaining peak cognitive performance, including memory, spatial navigation, and decision-making under threatening and uncertain conditions. Previous research has separately examined decision-making under conditions of stress or uncertainty (i.e., ambiguous discrimination between friends and foes). However, questions remain about how operationally relevant stress impacts memory encoding and recall, or spatial learning, as well as how uncertainty may impact decision-making during stress. To address this gap, we examined the influence of a military-relevant emotional stressor on a series of cognitive tasks including recognition memory task (RMT), spatial orienting task (SOT), and shoot/don’t shoot decision making (DMT). To examine the effects of uncertainty and stress we varied the stimulus clarity in the DMT. We utilized threat of shock (TOS) as a high-stakes outcome for decision errors. TOS increased sympathetic arousal but did not affect subjective emotional or HPA responses. TOS influenced decision times and confidence ratings in the DMT, but not response sensitivity or response bias. DMT performance varied by stimulus clarity (uncertainty) but did not differ between stress conditions. TOS did not influence recognition memory or spatial orienting. In sum, high levels of stress and uncertainty characterize military operations, yet stress experienced in military contexts can be difficult to induce in laboratory settings. We discuss several avenues for future research, including methodological considerations to better assess the magnitude and specificity of emotional stress-induction techniques in Soldiers.
Stress carries diverse implications for perceptual, cognitive, and affective functions. One population particularly susceptible to acute stress-induced cognitive changes are individuals with high-stress jobs (e.g., military personnel). These individuals are often tasked with maintaining peak cognitive performance, including memory, spatial navigation, and decision-making under threatening and uncertain conditions. Previous research has separately examined decision-making under conditions of stress or uncertainty (i.e., ambiguous discrimination between friends and foes). However, questions remain about how operationally relevant stress impacts memory encoding and recall, or spatial learning, as well as how uncertainty may impact decision-making during stress. To address this gap, we examined the influence of a military-relevant emotional stressor on a series of cognitive tasks including recognition memory task (RMT), spatial orienting task (SOT), and shoot/don’t shoot decision making (DMT). To examine the effects of uncertainty and stress we varied the stimulus clarity in the DMT. We utilized threat of shock (TOS) as a high-stakes outcome for decision errors. TOS increased sympathetic arousal but did not affect subjective emotional or HPA responses. TOS influenced decision times and confidence ratings in the DMT, but not response sensitivity or response bias. DMT performance varied by stimulus clarity (uncertainty) but did not differ between stress conditions. TOS did not influence recognition memory or spatial orienting. In sum, high levels of stress and uncertainty characterize military operations, yet stress experienced in military contexts can be difficult to induce in laboratory settings. We discuss several avenues for future research, including methodological considerations to better assess the magnitude and specificity of emotional stress-induction techniques in Soldiers.
In occupational domains such as sports, healthcare, driving, and military, both individuals and small groups are expected to perform challenging tasks under adverse conditions that induce transient cognitive states such as stress, workload, and uncertainty. Wearable and standoff 6DOF sensing technologies are advancing rapidly, including increasingly miniaturized yet robust inertial measurement units (IMUs) and portable marker-less infrared optical motion tracking. These sensing technologies may offer opportunities to track overt physical behavior and classify cognitive states relevant to human performance in diverse human–machine domains. We describe progress in research attempting to distinguish cognitive states by tracking movement behavior in both individuals and small groups, examining potential applications in sports, healthcare, driving, and the military. In the context of military training and operations, there are no generally accepted methods for classifying transient mental states such as uncertainty from movement-related data, despite its importance for shaping decision-making and behavior. To fill this gap, an example data set is presented including optical motion capture of rifle trajectories during a dynamic marksmanship task that elicits variable uncertainty; using machine learning, we demonstrate that features of weapon trajectories capturing the complexity of motion are valuable for classifying low versus high uncertainty states. We argue that leveraging metrics of human movement behavior reveals opportunities to complement relatively costly and less portable neurophysiological sensing technologies and enables domain-specific human–machine interfaces to support a wide range of cognitive functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.