Adaptive management involves learning-oriented decision making in the presence of uncertainty about the responses of a resource system to management. It is implemented through an iterative sequence of decision making, monitoring and assessment of system responses, and incorporating what is learned into future decision making. Decision making at each point is informed by a value or objective function, for example total harvest anticipated over some time frame. The value function expresses the value associated with decisions, and it is influenced by system status as updated through monitoring. Often, decision making follows shortly after a monitoring event. However, it is certainly possible for the cadence of decision making to differ from that of monitoring. In this paper we consider different combinations of annual and biennial decision making, along with annual and biennial monitoring. With biennial decision making decisions are changed only every other year; with biennial monitoring field data are collected only every other year. Different cadences of decision making combine with annual and biennial monitoring to define 4 scenarios. Under each scenario we describe optimal valuations for active and passive adaptive decision making. We highlight patterns in valuation among scenarios, depending on the occurrence of monitoring and decision making events. Differences between years are tied to the fact that every other year a new decision can be made no matter what the scenario, and state information is available to inform that decision. In the subsequent year, however, in 3 of the 4 scenarios either a decision is repeated or monitoring does not occur (or both). There are substantive differences in optimal values among the scenarios, as well as the optimal policies producing those values. Especially noteworthy is the influence of monitoring cadence on valuation in some years. We highlight patterns in policy and valuation among the scenarios, and discuss management implications and extensions.