State Encoders in Reinforcement Learning for Recommendation: A Reproducibility Study
Jin Huang,
Harrie Oosterhuis,
Bunyamin Cetinkaya
et al.
Abstract:Methods for reinforcement learning for recommendation (RL4Rec) are increasingly receiving attention as they can quickly adapt to user feedback. A typical RL4Rec framework consists of (1) a state encoder to encode the state that stores the users' historical interactions, and (2) an RL method to take actions and observe rewards. Prior work compared four state encoders in an environment where user feedback is simulated based on real-world logged user data. An attention-based state encoder was found to be the opti… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.