2014
DOI: 10.1155/2014/209486
|View full text |Cite
|
Sign up to set email alerts
|

State Estimation for Discrete-Time Stochastic Neural Networks with Mixed Delays

Abstract: This paper investigates the analysis problem for stability of discrete-time neural networks (NNs) with discrete- and distribute-time delay. Stability theory and a linear matrix inequality (LMI) approach are developed to establish sufficient conditions for the NNs to be globally asymptotically stable and to design a state estimator for the discrete-time neural networks. Both the discrete delay and distribute delays employ decomposing the delay interval approach, and the Lyapunov-Krasovskii functionals (LKFs) ar… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 27 publications
0
0
0
Order By: Relevance