2023
DOI: 10.1007/s00521-023-08471-7
|View full text |Cite
|
Sign up to set email alerts
|

State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer

Abstract: The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH of LIBs. The BPNN uses as input the LIB voltage, current and temperature, as well as the charging time, since it is strongly correlated with the SOH. The number of hidden layer nodes is adaptively set based on the tr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 9 publications
references
References 43 publications
0
0
0
Order By: Relevance