“…The minimum entropy production approach was successfully applied to optimization of the methanol synthesis via the carbon dioxide hydrogenation reactor [54], the ammonia synthesis reactor [55], the SO 2 oxidation reactor [30], small modular reactors [1,4], tubular steam reformer [35,56,57], the reverse water-gas shift reactors [58,59], dimethyl ether synthesis reactors [60], catalytic combustion of air pollutants with Pd/Al 2 O 3 catalyst [37], polymer electrolyte membrane fuel cells (FC) with Fermat spiral [61], biomimetic [62] and fractal-type [63] flow-fields, solid oxide FC [64], in ammonia-methane fueled microcombustor for thermophotovoltaic applications [65], in hydrocarbon synthesis reactor with carbon dioxide and hydrogen [66], CO 2 hydrogenation [67], isothermal crystallization processing [68], in the Fickett-Jacob cycle [69], diabatic distillation [70], in hydrogen iodide decomposition reactors heated by high-temperature helium [71], ideal reactors and practical industrial reactors [60,72], stirred tank and plug flow reactors [72], thermoelectric modules [73], heaters [13,74,75], and chillers [76]. Based on the minimum entropy production approach, a nanofluid-based tubular reactor was optimized to the elliptic shape with the axes ratio 5:3 that gave up to 16.82% reduction in the entropy production and rise in the thermal efficiency from 74% to 80% [77].…”