The viscosity of polymer solutions is important for both polymer synthesis and recycling. Polymerization reactions can become hampered by diffusional limitations once a viscosity threshold is reached, and viscous solutions complicate the cleaning steps during the dissolution−precipitation technique. Available experimental data is limited, which is more severe for green solvents, justifying dedicated viscosity data recording and interpretation. In this work, a systematic study is therefore performed on the viscosity of polystyrene solutions, considering different concentrations, temperatures, and conventional and green solvents. The results show that for the shear rate range of 1−1000 s −1 , the solutions with concentrations between 5 and 39 wt % display mainly Newtonian behavior, which is further confirmed by the applicability of the segment-based Eyring-NRTL and Eyring-mNRF models. Moreover, multivariate data analysis successfully predicts the viscosity of polystyrene solutions under different conditions. This approach will facilitate future data recording for other polymer−solvent combinations while minimizing experimental effort.