In recent years, interest in early age concrete cracking has increased due to its effects on the durability and performance of concrete structures. A time-dependent material model and a structural analysis method have been developed to evaluate thermal cracking behavior. To simulate such behavior at early ages, a solidified constitutive model is proposed, which is based on the solidification concept with dependence on time and strain histories. The unified numerical model consists of a Rigid-Body-Spring Network, representing the structural behavior, combined with a truss model to represent heat transfer. Wall concrete structures are analyzed to verify the solidified constitutive model and the overall approach. The proposed model results and the experimental results show reasonable agreement in terms of cracking behavior, stress distributions and structural deformations.