Les textes publiés dans la série des rapports de recherche HEC n'engagent que la responsabilité de leurs auteurs. La publication de ces rapports de recherche bénéficie d'une subvention du Fonds F.C.A.R.
Cluster Analysis and Mathematical ProgrammingPierre Hansen GERAD andÉcole des HautesÉtudes Commerciales Montréal, CanadaBrigitte Jaumard GERAD andÉcole Polytechnique de Montréal Canada
February, 1997Les Cahiers du GERAD
G-97-10Abstract Given a set of entities, Cluster Analysis aims at finding subsets, called clusters, which are homogeneous and/or well separated. As many types of clustering and criteria for homogeneity or separation are of interest, this is a vast field. A survey is given from a mathematical programming viewpoint.Steps of a clustering study, types of clustering and criteria are discussed. Then algorithms for hierarchical, partitioning, sequential, and additive clustering are studied. Emphasis is on solution methods, i.e., dynamic programming, graph theoretical algorithms, branch-and-bound, cutting planes, column generation and heuristics.