Energized molecules are the essential actors in chemical transformations in solution. As the rearrangement of bonds requires a movement of nuclei, vibrational energy is often the driving force for a reaction. Vibrational energy can be redistributed within the "hot" molecule, or relaxation can occur when molecules interact. Both processes govern the rates, pathways, and quantum yields of chemical transformations in solution. Unfortunately, energy transfer and the breaking, formation, and rearrangement of bonds take place on ultrafast timescales. This Review highlights experimental approaches for the direct, ultrafast measurement of photoinduced femtochemistry and energy flow in solution. In the first part of this Review, we summarize recent experiments on intra- and intermolecular energy transfer. The second part discusses photoinduced decomposition of large organic peroxides, which are used as initiators in free radical polymerization. The mechanisms and timescales of their decarboxylation determine the initial steps of polymerization and the microstructure of the polymer product.