The early time dynamics of vibrationally excited glyoxylic acid and of its monohydrate 2,2-dihydroxyacetic acid are investigated by theoretical and spectroscopic methods. A combination of "on-the-fly" dynamical simulations and cavity ring-down spectroscopy on the excited O-H stretching vibrational levels of these molecules observed that conformers that possess the correct structure and orientation react upon excitation of Deltaupsilon(OH)=4,5, while the structurally different but near isoenergetic conformers do not undergo unimolecular decay by the same direct and fast process. Experiment and theory give a femtosecond time scale for hydrogen atom chattering in the vibrationally excited glyoxylic acid. This process is the precursor for the concerted decarboxylation of the ketoacid. We extrapolate the results obtained here to suggest a rapid subpicosecond overall reaction. In these light-initiated reactions, relatively cold hydroxycarbenes, stable against further unimolecular decay, are expected products since most of the excitation energy is consumed by the endothermicity of the reaction. Glyoxylic acid and its monohydrate are atmospherically relevant ketoacids. The vibrational overtone initiated reactions of glyoxylic acid leading to di- and monohydroxycarbenes on subpicosecond time scales are potentially of importance in atmospheric chemistry since the reaction is sufficiently rapid to avoid collisional dissipation.