In this study, we use a multi-parameter perturbation method to solve the problem of a functionally graded piezoelectric cantilever beam under combined loads, in which three piezoelectric coefficients are selected as the perturbation parameters. First, we derive the two basic equations concerning the Airy stress function and electric potential function. By expanding the unknown Airy stress function and electric potential function with respect to three perturbation parameters, the two basic equations were decoupled, thus obtaining the corresponding multi-parameter perturbation solution under boundary conditions. From the solution obtained, we can see clearly how the piezoelectric effects influence the behavior of the functionally graded piezoelectric cantilever beam. Based on a numerical example, the variations of the elastic stresses and displacements as well as the electric displacements of the cantilever beam under different gradient exponents were shown. The results indicate that if the pure functionally graded cantilever beam without a piezoelectric effect is regarded as an unperturbed system, the functionally graded piezoelectric cantilever beam can be looked upon as a perturbed system, thus opening the possibilities for perturbation solving. Besides, the proposed multi-parameter perturbation method provides a new idea for solving similar nonlinear differential equations.